We have, x=1+y1−y ⇒x(1+y)=1−y ⇒x+xy=1−y ⇒x+(x+1)y=1
On differentiating both sides w.r.t. x, we get 1+2y(x+1)y1+y=0 ⇒(x+1)y1+2y=−2y
Again differentiating both sides w.r.t. X, we get (x+1)y2+y1+2y1=2y−2y1 ⇒(x+1)y2+3y1+y1y1=0 ⇒(x+1)y2+(y3y+1)y1=0