Here, we have ∣x∣<1
Consider (1+x+x2)(1−x+x2)=(1+x2)2−x2 =1+x2+x4 (1+x+x2)(1−x+x2)(1−x2+x4) =(1+x2+x4)(1+x2−x4) =(1+x4)2−x4 =1+x4+x8
Continuing in the same way, we obtain (1+x+x2)(1−x+x2)(1−x2+x4) ...(1−x2n−1+x2n) =1+x2n+x2n+1
Taking limit n→∞, we get (1+x+x2)(1−x+x2) (1−x2+x4)…=1[ as ∣x∣<1]
Taking log on both sides, we get log(1+x+x2)+log(1−x+x2)+log(1−x2+x4)+…=0
Differentiating both sides w.r.t. x1 we get 1+x+x21+2x+1−x+x2−1+2x+1−x2+xy−2x+4x3+…=0 ⇒1−x+x21−2x+1−x2+x42x−4x3+…=1+x+x21+2x
When x=1 , then 1+x+x21+2x=1