Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |x -1&5x&7 x2 -1&x -1&8 2x&3x&0| =ax3 +bx2 +cx+ d, then c is equal to
Q. If
∣
∣
x
−
1
x
2
−
1
2
x
5
x
x
−
1
3
x
7
8
0
∣
∣
=
a
x
3
+
b
x
2
+
c
x
+
d
, then
c
is equal to
1660
199
Determinants
Report Error
Answer:
17
Solution:
Given
∣
∣
x
−
1
x
2
−
1
2
x
5
x
x
−
1
3
x
7
8
0
∣
∣
=
a
x
3
+
b
x
2
+
c
x
+
d
⇒
(
x
−
1
)
[
−
24
x
]
−
5
x
[
−
16
x
]
+
7
[
(
x
2
−
1
)
(
3
x
)
−
2
x
(
x
−
1
)
]
=
a
x
3
+
b
x
2
+
c
x
+
d
⇒
−
24
x
2
+
24
x
+
80
x
2
+
7
[
3
x
3
−
3
x
−
2
x
2
+
2
x
]
=
a
x
3
+
b
x
2
+
c
x
+
d
⇒
42
x
2
+
17
x
+
21
x
3
=
a
x
3
+
b
x
2
+
c
x
+
d
By comparing coefficients of
x
on both sides, we get :
c
=
17