Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x1>0, i=1,2, ldots, 50 and x1+x2+ ldots+x50=50, then the minimum value of (1/x1)+(1/x2)+ ldots . .+(1/x50) equals
Q. If
x
1
>
0
,
i
=
1
,
2
,
…
,
50
and
x
1
+
x
2
+
…
+
x
50
=
50
, then the minimum value of
x
1
1
+
x
2
1
+
…
..
+
x
50
1
equals
381
166
Sequences and Series
Report Error
A
50
B
(
50
)
2
C
(
50
)
3
D
(
50
)
4
Solution:
x
1
+
x
2
+
x
3
+
…………
+
x
50
=
50
A
M
≥
H
M
50
x
1
+
x
2
+
……
..
+
x
50
≥
50
x
1
1
+
x
2
1
+
x
3
1
+
…
.
+
x
50
1
1
⇒
50
x
1
+
x
2
+
………
+
x
50
≥
x
1
1
+
x
2
1
+
……
..
+
x
50
1
50
⇒
x
1
1
+
x
2
1
+
……
..
+
x
50
1
≥
50
so minimum value of
x
1
1
+
x
2
1
+
……
..
+
x
50
1
=
50