Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x0, y0) be the solution of the system of the equation 3 ln x=4 ln y and (4 x) ln 4=(3 y) ln 3, then
Q. If
(
x
0
,
y
0
)
be the solution of the system of the equation
3
l
n
x
=
4
l
n
y
and
(
4
x
)
l
n
4
=
(
3
y
)
l
n
3
, then
55
105
Continuity and Differentiability
Report Error
A
x
0
1
+
y
0
1
=
7
B
x
0
1
−
y
0
1
=
1
C
4
x
0
−
3
y
0
=
1
D
x
0
+
y
0
=
12
7
Solution:
3
l
n
x
=
4
l
n
y
.....(1)
and
(
4
x
)
l
n
4
=
(
3
y
)
l
n
3
.....(2)
(
1
)
⇒
(
ln
x
)
(
ln
3
)
=
(
ln
y
)
(
ln
4
)
(
2
)
⇒
(
ln
4
)
(
ln
4
+
ln
x
)
=
(
ln
3
)
(
ln
3
+
ln
y
)
ln
2
4
−
ln
2
3
=
(
ln
3
)
ln
y
−
(
ln
4
)
ln
x
ln
2
4
−
ln
2
3
=
l
n
4
(
l
n
2
3
)
(
l
n
x
)
−
l
n
2
4
(
l
n
x
)
∴
ln
x
=
−
ln
4
⇒
x
0
=
4
1
and
y
=
3
1
.