Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x > 0, cos-1 ((12/x)) = (π/2) - cos-1 ((16/x)), then x equals
Q. If
x
>
0
,
co
s
−
1
(
x
12
)
=
2
π
−
co
s
−
1
(
x
16
)
, then
x
equals
1773
194
Inverse Trigonometric Functions
Report Error
A
12
×
16
10%
B
3
4
5%
C
4
3
2%
D
20
83%
Solution:
co
s
−
1
(
x
12
)
+
co
s
−
1
(
x
16
)
=
2
π
⇒
x
12
⋅
x
16
−
1
−
(
x
12
)
2
1
−
(
x
16
)
2
=
cos
2
π
(using,
co
s
−
1
x
+
co
s
−
1
y
=
co
s
−
1
(
x
y
−
(
1
−
x
2
)
(
1
−
y
2
)
))
⇒
[
1
−
(
x
12
)
2
]
[
1
−
(
x
16
)
2
]
=
(
x
12
)
2
(
x
16
)
2
⇒
(
x
12
)
2
+
(
x
16
)
2
=
1
⇒
x
=
20
Alternative Solution :
co
s
−
1
(
x
12
)
=
2
π
−
co
s
−
1
(
x
16
)
⇒
cos
(
co
s
−
1
(
x
12
)
)
=
cos
(
2
π
−
co
s
−
1
(
x
16
)
)
=
cos
2
π
cos
(
co
s
−
1
(
x
16
)
)
+
s
in
2
π
s
in
(
co
s
−
1
(
x
16
)
)
⇒
x
12
=
s
in
co
s
−
1
(
x
16
)
⇒
x
12
=
(
s
in
co
s
−
1
(
x
16
)
)
2
⇒
(
x
12
)
2
=
1
−
(
cos
co
s
−
1
(
x
16
)
)
2
⇒
(
x
12
)
2
+
(
x
16
)
2
=
1
∴
x
=
20
Short Cut Method :
Using fact :
co
s
−
1
A
+
co
s
−
1
B
=
2
π
then
A
2
+
B
2
=
1
Now,
co
s
−
1
(
x
12
)
+
co
s
−
1
(
x
16
)
=
2
π
⇒
(
x
12
)
2
+
(
x
16
)
2
=
1
⇒
(
12
)
2
+
(
16
)
2
=
x
2
⇒
x
=
20
(as
x
>
0
)