1698
160
AIEEEAIEEE 2005Complex Numbers and Quadratic Equations
Report Error
Solution:
Key Idea : If ∣∣z−z2z−z1∣∣=k, then z lies on a circle of k=1 and z lies on a perpendicular bisector of segment with end points Z1 and z2, if k=1.
Given that w=z−3iz and ∣w∣=1 ⇒∣∣z−3iz∣∣=1⇒∣z∣=∣∣z−3i∣∣ ⇒z lies on ⊥ bisector of (0,0) and (0,31).
So, z lies on a straight line. Alternate Solution ∵w=z−3iz and ∣w∣=1 ⇒∣∣z−3iz∣∣=1 ⇒3∣z∣=∣3z−i∣
Let z=x+iy ∴3∣x+iy∣=∣3(x+iy)−i∣ ⇒3(x2+y2)=(3x)2+(3y−1)2 ⇒9x2+9y2=9x2+9y2+1−6y ⇒y=61 ∴ Which shows that z lies on a straight line.