Since, f(x) is decreasing odd function. ∴f(−x)=−f(x)andf′(x)<0 Now, let y=f−1(x)∴f(y)=x Then, f′(y)dxdy=1∴dxdy=f′(y)1<0[∵f′(x)<0]⇒dxdy<0∴f−1(x) is decreasing function. Let z=f−1(−x) ??. (i) ∴−x=f(z)⇒x=−f(z)=f(−z)[∵fisoddfuncation]∴−z=f−1(x)⇒z=f−1(x) From Eq. (i), f−1(x)=−f−1(x) So, f−1(x) is an odd function. Hence, f−1(x) is an odd and decreasing function.