Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If vecx+ vecy+ vecz= vec0, | vecx|=| vecy|=| vecz|=2 and θ is angle between vecy and vecz, then the value of textcose textc2θ + cot 2θ is equal to
Q. If
x
+
y
​
+
z
=
0
,
∣
x
∣
=
∣
y
​
∣
=
∣
z
∣
=
2
and
θ
is angle between
y
​
and
z
,
then the value of
cose
c
2
θ
+
cot
2
θ
is equal to
2099
190
J & K CET
J & K CET 2005
Report Error
A
4/3
B
5/3
C
1/3
D
1
Solution:
Given,
x
+
y
​
+
z
=
0
and
∣
x
∣
=
∣
y
​
∣
=
∣
z
∣
=
2
∴
x
=
−
y
​
−
z
⇒
x
2
=
(
y
​
+
z
)
2
⇒
∣
x
∣
2
=
∣
y
​
∣
2
+
∣
z
∣
2
+
2∣
y
∣∣
z
∣
cos
θ
⇒
4
=
4
+
4
+
2
×
2
×
2
cos
θ
⇒
cos
θ
=
−
8
4
​
=
−
2
1
​
=
cos
120
o
⇒
θ
=
120
o
Now,
cose
c
2
θ
+
cot
2
θ
=
cose
c
2
120
o
+
cot
2
120
o
=
(
3
​
2
​
)
2
+
(
−
3
​
1
​
)
2
=
3
4
​
+
3
1
​
=
3
5
​