Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a , b , c are vectors such that a + b + c =0 and | a |=7,| b |=5,| c |=3, then the angle between c and b is
Q. If
a
,
b
,
c
are vectors such that
a
+
b
+
c
=
0
and
∣
a
∣
=
7
,
∣
b
∣
=
5
,
∣
c
∣
=
3
, then the angle between
c
and
b
is
1914
202
KEAM
KEAM 2017
Vector Algebra
Report Error
A
π
/3
42%
B
π
/6
12%
C
π
/4
28%
D
π
6%
E
0
6%
Solution:
We have,
a
+
b
+
c
=
0
⇒
b
+
c
=
−
a
⇒
∣
b
+
c
∣
=
∣
−
a
∣
⇒
∣
b
+
c
∣
=
∣
a
∣
⇒
∣
b
+
c
∣
2
=
∣
a
∣
2
⇒
(
b
+
c
)
⋅
(
b
+
c
)
=
∣
a
∣
2
⇒
∣
b
∣
2
+
∣
c
∣
2
+
2∣
b
∣∣
c
∣
cos
θ
=
∣
a
∣
2
⇒
(
5
)
2
+
(
3
)
2
+
2
×
5
×
3
cos
θ
=
(
7
)
2
⇒
25
+
9
+
30
cos
θ
=
49
⇒
30
cos
θ
=
15
⇒
cos
θ
=
2
1
⇒
θ
=
6
0
∘
or
π
/3
∴
Angle between
b
and
c
is
3
π
.