Given , ∣a×b∣=5 and ∣a.b∣=3
We know that a×b=∣a∣∣b∣sinθn^ ∴∣∣a×b∣∣=∣∣∣a∣∣∣b∣∣sinθn^∣∣ =∣∣∣a∣∣∣b∣∣1−cos2θn^∣∣ =∣∣∣a∣∣∣b∣∣1−(∣a∣∣b∣a.b)2∣∣.∣n^∣ =∣∣∣a∣∣∣b∣∣∣a∣∣b∣(∣a∣∣b∣)2−(a.b)2∣∣(∴∣n^∣=1) ∣∣a×b∣∣=∣∣∣a∣2∣∣b∣∣2−(a.b)2∣∣
Squaring both sides, we get ∣∣a×b∣∣2=∣a∣2∣∣b∣∣2−(a.b)2
or ∣a∣2∣∣b∣∣2=∣∣a×b∣∣2+(a.b).(a.b) =(∣∣a×b∣∣)2+(∣∣a.b∣∣)2 =(5)2+(3)2=25+9=34