Q.
If x→0lim(3x)3sin2x−asinx=L exists finitely, then the absolute value of L is equal to
1898
250
NTA AbhyasNTA Abhyas 2020Limits and Derivatives
Report Error
Answer: 27
Solution:
L=x→0lim27x⋅x2sinx(2cosx−a)=x→0lim(xsinx)(x22cosx−a)×27
This limit to exists finitely x→0limx22cosx−a= finite ∴ It must be 00 form ∴2cos(0)−a=0⇒a=2 ⇒L=x→0lim(xsinx)×2(x2cosx−1)×27 ⇒L=1×2×(−21)×27=−27