Q.
If x→0limx3sin−1x−tan−1x=L, then the value of (4L+1) is equal to
771
170
NTA AbhyasNTA Abhyas 2022Limits and Derivatives
Report Error
Answer: 3
Solution:
Let L=x→0limx3sin−1x−tan−1x
It is 00 form. So, using L'Hospital's rule, we get L=x→0lim3x21−x2−1+x211 =31x→0limx211+x21−x21+x2−1−x2 =31x→0limx211+x21−x21+x2−1−x2⋅1+x2+1−x21 =31x→0lim(1+x2)1−x2(3+x2)[(1+x2)+1−x2]1 L=3123=21 ⇒4L=2⇒4L+1=3