Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If undersetx arrow 0 textLim (a sin x +b x ex+3 x2/ sin x-2 x+ tan x) exists and has value equal to L, then the value of (b-L/a), is equal to
Q. If
x
→
0
Lim
s
i
n
x
−
2
x
+
t
a
n
x
a
s
i
n
x
+
b
x
e
x
+
3
x
2
exists and has value equal to
L
, then the value of
a
b
−
L
, is equal to
76
160
Limits and Derivatives
Report Error
Answer:
3
Solution:
L
=
x
→
0
Lim
(
x
3
s
i
n
x
−
x
−
x
3
(
x
−
t
a
n
x
)
)
x
3
a
(
x
−
3
!
x
3
+
…
)
+
b
x
(
1
+
1
!
x
+
2
!
x
2
+
…
)
+
3
x
2
L
=
6
x
→
0
Lim
x
3
x
(
a
+
b
)
+
x
2
(
b
+
3
)
+
x
3
(
2
b
−
6
a
)
+
…
⇒
L
=
6
(
2
b
−
6
a
)
⇒
a
+
b
=
0
and
b
+
3
=
0
⇒
b
=
−
3
. Also
a
=
3
L
=
6
(
−
2
3
−
6
3
)
=
−
12
Hence,
(
a
b
−
L
)
=
3
−
3
−
(
−
12
)
=
3
9
=
3