Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If u = x2 + y2 and x = s + 3t, y = 2s - t, then (d2u/ds2) is equal to
Q. If
u
=
x
2
+
y
2
and
x
=
s
+
3
t
,
y
=
2
s
−
t
, then
d
s
2
d
2
u
is equal to
2913
199
Continuity and Differentiability
Report Error
A
12
12%
B
32
31%
C
36
41%
D
10
17%
Solution:
Given,
u
=
x
2
+
y
2
,
x
=
s
+
3
t
,
y
=
2
s
−
t
⇒
d
s
d
x
=
1
,
d
s
d
y
=
2
Now,
u
=
x
2
+
y
2
⇒
d
s
d
u
=
2
x
d
s
d
x
+
2
y
d
s
d
y
=
2
x
+
4
y
d
s
2
d
2
u
=
2
(
d
s
d
x
)
+
4
(
d
s
d
y
)
⇒
d
s
2
d
2
u
=
2
(
1
)
+
4
(
2
)
=
10