∵u=log(x3+y3+z3−3xyz) On differentiating w. r. t. x,y,z respectively, we get ∂x∂u=x3+y3+z3−3xyz1(3x2−3yz)∂y∂u=x3+y3+z3−3xyz1(3y2−3xz) and ∂z∂u=x3+y3+z3−3xyz1(3z2−3xy)∴(x+y+z)(∂x∂u+∂y∂u+∂z∂u)=(x3+y3+z3−3xyz)3(x+y+z)(x2+y2+z2−xy−yz−zx)=(x3+y3+z3−3xyz)3(x3+y3+z3−3xyz)=3