Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If u=a - b and v = a + b and |a| = |b| = 2 , then | u × v| is equal to
Q. If
u
=
a
−
b
and
v
=
a
+
b
and
∣
a
∣
=
∣
b
∣
=
2
, then
∣
u
×
v
∣
is equal to
2772
204
MHT CET
MHT CET 2011
Report Error
A
2
16
−
(
a
⋅
b
)
2
B
16
−
(
a
⋅
b
)
2
C
2
4
−
(
a
⋅
b
)
2
D
2
4
+
(
a
⋅
b
)
2
Solution:
∣
u
×
v
∣
=
∣
(
a
−
b
)
×
(
a
+
b
)
∣
=
2∣
a
×
b
∣
(
∵
a
×
a
=
b
×
b
=
0
)
and
∣
a
×
b
∣
2
+
(
a
⋅
b
)
2
=
(
ab
sin
θ
)
2
+
(
ab
cos
θ
)
2
=
a
2
b
2
⇒
∣
a
×
b
∣
=
a
2
b
2
−
(
a
⋅
b
)
2
So,
∣
u
×
v
∣
=
2∣
a
×
b
∣
=
2
a
2
b
2
−
(
a
⋅
b
)
2
=
2
2
2
2
2
−
(
a
⋅
b
)
2
=
2
16
−
(
a
⋅
b
)
2
(
∵
∣
a
∣
=
∣
b
∣
=
2
)