Let the point of intersection of the line y=ax with the chord be (α,aα), then α=24+x1 ⇒x1=2α−4 and aα=24+y1 ⇒y1=2aα−4
As (x1,y1) lies on the parabola (2aα−4)2=4(2α−4) ⇒4a2α2+16−16aα=8α−16 ⇒4a2α2−16aα−8α+32=0 ⇒4a2α2−(16a+8)α+32=0
For two distinct chords D>0 =(16a+8)2−4(4a2)(32)>0 =64(2a+1)2−512a2>0 =64(4a2+1+4a)−512a2>0 =256a2+64+256a−512a2>0 =−256a2+256a+64>0 =256a2−256a−64<0 =64(4a2−4a−1)<0 =(4a2−4a−1)<0 =4a2−4a+1<2 =(2a−1)2<2=−2≤(2a−1)≤2 =1−2≤2a≤1+2 =21−2≤a≤21+2