Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If triangle ABC, if a2-c2=b(b-c), √2 a=2 b-c and R=(1/√3) then b=
Q. If
â–³
A
BC
, if
a
2
−
c
2
=
b
(
b
−
c
)
,
2
​
a
=
2
b
−
c
and
R
=
3
​
1
​
then
b
=
1645
231
TS EAMCET 2020
Report Error
A
3
​
2
​
​
B
6
​
3
​
−
1
​
C
6
​
3
​
+
1
​
D
2
​
3
​
​
Solution:
We have
a
2
−
c
2
=
b
(
b
−
c
)
,
2
​
a
=
2
b
−
c
and
R
=
3
​
1
​
⇒
a
2
−
c
2
=
−
b
2
−
b
c
⇒
b
2
+
c
2
−
a
2
=
b
c
⇒
2
b
c
b
2
+
c
2
−
a
2
​
=
2
1
​
⇒
cos
A
=
2
1
​
⇒
A
=
6
0
∘
Since,
s
i
n
A
a
​
=
2
R
⇒
s
i
n
6
0
∘
a
​
=
3
​
2
​
⇒
a
=
1
2
​
a
=
2
b
−
c
⇒
2
a
2
=
4
b
2
+
c
2
−
4
b
c
⇒
2
a
2
=
4
(
b
2
−
b
c
)
+
c
2
⇒
2
=
4
(
a
2
−
c
2
)
+
c
2
⇒
2
=
4
−
3
c
2
⇒
c
2
=
3
2
​
⇒
c
=
3
​
2
​
​
Now,
2
b
=
2
​
a
+
c
⇒
2
b
=
2
​
+
3
​
2
​
​
⇒
b
=
2
3
​
2
​
(
3
​
+
1
)
​
=
6
​
3
​
+
1
​