Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If θ=(π/6) and x= log [ cot ((π/4)+θ)], then sinh (x)=
Q.
I
f
θ
=
6
π
and
x
=
lo
g
[
cot
(
4
π
+
θ
)
]
, then
sinh
(
x
)
=
2185
197
AP EAMCET
AP EAMCET 2019
Report Error
A
3
B
3
1
C
−
3
D
−
3
1
Solution:
At
θ
=
6
π
,
x
=
lo
g
[
cot
(
4
π
+
θ
)
]
⇒
x
=
lo
g
[
cot
(
4
π
+
6
π
)
]
⇒
e
x
=
c
o
t
π
/6
+
c
o
t
π
/4
c
o
t
π
/4
c
o
t
π
/6
−
1
⇒
e
x
=
3
+
1
3
−
1
∴
e
−
x
=
3
−
1
3
+
1
∵
sin
h
(
x
)
=
2
e
x
−
e
−
x
=
2
3
+
1
3
−
1
−
3
−
1
3
+
1
=
4
(
3
+
1
−
2
3
)
−
(
3
+
1
+
2
3
)
=
−
4
4
3
=
−
3