Given: 3tanθ+4=0 ⇒3tanθ=−4 ⇒tanθ=−34(θ lies in the IInd quadrant ) { By using Pythagoras theorem, we get =AC =5∵AC=(AB)2+(BC)2} sinθ=54(+ve)⇒ in second quadrant cosθ=−53 cotθ=−43
Putting values of sinθ,cosθ and cotθ, we get 12(4−3)−20(−53)+5(54) =−9+12+4=7