Volume of cone, V=3πr2h ⇒V=3πr2l2−r2
On differentiating w.r.t., r we get drdV=3π[2rl2−r2+2l2−r2r2(−2r)]
Put drdV=0 ⇒2r(l2−r2)−l2−r2r3=0 ⇒r2(l2−r2)−r3]=0 ⇒2l2−3r2=0 ⇒r=±32 ∴ At r=32,dr2d2V<0, maxima ∴h=l2−32l2=3l
In ΔABC,tanθ=hr =3l32=2