Volume of cone, V=3π​r2h ⇒V=3π​r2l2−r2​
On differentiating w.r.t. r we get drdV​=3π​[2rl2−r2​+212−r2​r2​(−2r)]
Put drdV​=0, we get r=±l32​​
At r=l32​​,dr2d2V​<0, (maximum) ∴h=l2−32​l2​−3​l​
In ΔABC,tanθ=hr​=l/3l32​​​=2​