Given equations are x2+y2=5…(i)
and y2=4x…(ii)
On solving Eq. (i) and (ii), we get x=−5,1
at x=−5,y2=−20 (imaginary value) ∴ at x=1,y2=4 ⇒y=±2
Hence, point of intersection are (1,2) and (1,−2)
On differentiating Eq. (i) w. r. t. x, we get 2x+2ydxdy=0 ⇒dxdy=−yx ∴m1=(dxdy)(1,2)=−21
And on differentiating Eq. (ii) w. r. t. x, we get 2ydxdy=4 ⇒dxdy=y2 m2=(dxdy)(1,2)=22=1
Now, tanθ=∣∣1+m1m2m1−m2∣∣ =∣∣1−21−21−1∣∣=∣∣21−23∣∣=3