Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If θ ∈(π / 4, π / 2) and displaystyle∑n=1∞ (1/ tan n θ)= sin θ+ cos θ then the value of tan θ is
Q. If
θ
∈
(
π
/4
,
π
/2
)
and
n
=
1
∑
∞
tan
n
θ
1
=
sin
θ
+
cos
θ
then the value of
tan
θ
is
104
136
Sequences and Series
Report Error
A
3
B
2
+
1
C
2
+
3
D
2
Solution:
tan
θ
>
1
⇒
0
<
t
a
n
θ
1
<
1
now,
t
a
n
θ
1
+
t
a
n
2
θ
1
+
t
a
n
3
θ
1
+
……
∞
=
sin
θ
+
cos
θ
1
−
t
a
n
θ
1
t
a
n
θ
1
=
sin
θ
+
cos
θ
⇒
t
a
n
θ
−
1
1
=
sin
θ
+
cos
θ
⇒
s
i
n
θ
−
c
o
s
θ
c
o
s
θ
=
sin
θ
+
cos
θ
cos
θ
=
sin
2
θ
−
cos
2
θ
=
1
−
2
cos
2
θ
2
cos
2
θ
+
cos
θ
−
1
=
0
⇒
(
2
cos
θ
−
1
)
(
cos
θ
+
1
)
=
0
cos
θ
=
2
1
or
cos
θ
=
−
1
(rejected)
θ
=
3
π
⇒
tan
θ
=
3