Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If θ1, θ2, θ3 are three values lying in [0,3 π) for which tan θ=λ, then the value of | tan ((θ1/3)) tan ((θ2/3))+ tan ((θ2/3)) tan ((θ3/3))+ tan ((θ3/3)) tan ((θ1/3))| is
Q. If
θ
1
,
θ
2
,
θ
3
are three values lying in
[
0
,
3
π
)
for which
tan
θ
=
λ
, then the value of
∣
∣
tan
(
3
θ
1
)
tan
(
3
θ
2
)
+
tan
(
3
θ
2
)
tan
(
3
θ
3
)
+
tan
(
3
θ
3
)
tan
(
3
θ
1
)
∣
∣
is
94
139
Trigonometric Functions
Report Error
A
1 /3
0%
B
1
35%
C
3
58%
D
none of these
8%
Solution:
tan
θ
=
1
−
3
t
a
n
2
3
θ
3
t
a
n
3
θ
−
t
a
n
3
3
θ
=
λ
⇒
tan
3
(
3
θ
)
−
3
λ
tan
2
(
3
θ
)
−
3
tan
2
θ
+
λ
=
0
Above equation has roots
tan
3
θ
1
,
tan
3
θ
2
,
tan
3
θ
3
∴
∣
∣
∑
tan
(
3
θ
1
)
tan
(
3
θ
2
)
∣
∣
=
∣
−
3∣
=
3