Volume of parallelepiped formed by the vectors i^+λj^+k^,j^+λk^ and λi^+k^ is given by V=∣∣10λλ101λ1∣∣ =(1){(1)(1)−(0)(λ)}−(λ){(0)(1)−(λ)(λ)}+(1){(0)(0)−(1)(λ)} =1+λ3−λ
Now, V=1+λ3−λ
So, dλdV=3λ2−1 .
For maxima or minima, dλdV=0 . ⇒3λ2−1=0 ⇒λ=±31
Also, dλ2d2V=6λ .
So, (d(λ)2d2V)λ=31=6×31=23>0 and (d(λ)2d2V)λ=−31=6×−31=−23<0
For minimum, (d(λ)2d2V)>0 .
So, volume is minimum at λ=31 .