Given vertices A(−4,5),B(0,7),C(5,−5) and D(−4,−2) are shown below in the xy-plane. Joining all the vertices a quadrilateral ABCD is formed.
Area of quadrilateral ABCD = Area of △ADC+ Area of △ABC.....(i)
Now, area of △ADC =21∣[−4(−2+5)−4(−5−5)+5(5+2)] [∵ Area =21∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2) and here, (x1,y1)=(−4,5),(x2,y2)=(−4,−2),(x3,y3)=(5,−5)] =21∣[−4×3−4(−10)+5×7]∣ =−21∣[−12+40+35]∣=21∣[75−12]∣=263
Area of △ABC=21∣[−4(7+5)+0(−5−5)+5(5−7)]∣ [ here, (x1,y1)=(−4,5),(x2,y2)=(0,7)and(x3,y3)=(5,−5)] 21∣[−4×12+0×(−10)+5(−2)]∣ =21∣−48−10∣ =2∣−58∣=29 ∴ From Eq. (i)
Area of quadrilateral ABCD =263+29=263+58=2121 =60.5 sq units