Given, AC=3i−4j−k
and BD=2i+3j−6k
Let sides of a rhombus be a and b. In ΔABC AC=AB+BC ⇒3i−4j−k=a+b⋯(i) BD=BA+AD ⇒2i+3j−6k=−a+b...(ii)
On adding Eqs. (i) and (ii), we get 5i−j−7k=2b ⇒∣2b∣=52+12+72​ ⇒∣b∣=225+1+49​​ ⇒∣b∣=275​​=253​​