Let vector a=a1i^+a2j^+a3k^
Now, vector bisector of angle between a and 6i^+8j^ is λ(∣a∣a+62+826i^+8j^)=λ(∣a∣a+106i^+8j^) =19i^+22j^+5k^( given ) ⇒∣a∣a=λ19i^+22j^+5k^−(53i^+54j^) =(λ19−53)i^+(λ22−54)j^+λ5k^ ∵∣a∣a is unit vector along a, so (λ19−53)2+(λ22−54)2+(λ5)2=1 λ2361+λ2484+λ225+259+2516−5λ114−5λ176=1 ⇒λ2870−5λ290=0 ⇒λ=15
So, ∣a∣a=(1519−53)i^+(1522−54)j^+3k^ =1510i^+1510j^+3k^=31(2i^+2j^+k^)