Q.
If the variable line 3x−4y+k=0 lies between the circles x2+y2−2x−2y+1=0 and x2+y2−16x−2y+61=0 without intersecting or touching either circle, then range of k is (a,b) where a,b∈I . Then the value of (b−a) , is
Given C1:x2+y2−2x−2y+1=0&C2:x2+y2−16x−2y+61=0 ⇒C1:(x−1)2+(y−1)2=12&C2:(x−8)2+(y−1)2=22
So, centre of C1&C2 are (1,1)&(8,1) respectively and their radii are 1&2 respectively.
According to the given condition in question, the centres must lie opposite to line 3x−4y+k=0 .
So, (3×1−4×1+k)(3×8−4×1+k)<0 ⇒(k−1)(k+20)<0 ⇒k∈(−20,1)...........(i)
Also, distance of given line from the centres must be greater than their radii.
So, 32+42∣3×1−4×1+k∣>1&32+42∣3×8−4×1+k∣>2 ⇒5∣k−1∣>1&5∣k+20∣>2 ⇒∣k−1∣>5&∣k+20∣>10 ⇒(k−1>5ork−1<−5)&(k+20>10ork+20<−10) ⇒(k>6ork<−4)&(k>−10ork<−30) ⇒k∈(−∞,−30)∪(−10,−4)∪(6,∞)..............(ii)
So, the range of k is the intersection of both the equations. ∴k∈(−10,−4)
So, (a,b)=(−10,−4)⇒a=−10&b=−4 ∴b−a=(−4)−(−10)=6 .