Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the value of the sum 29 binom300+28 binom301+27 binom302+.....+1 binom3028+0 binom3029- binom3030 where beginpmatrix n r endpmatrix= n C r , is equal to k 232, then the value of k is equal to
Q. If the value of the sum
29
(
0
30
)
+
28
(
1
30
)
+
27
(
2
30
)
+
.....
+
1
(
28
30
)
+
0
(
29
30
)
−
(
30
30
)
where
(
n
r
)
=
n
C
r
, is equal to
k
2
32
, then the value of
k
is equal to
207
107
Binomial Theorem
Report Error
A
7
B
14
C
2
5
D
2
7
Solution:
S
=
29
(
0
30
)
+
28
(
1
30
)
+
27
(
2
30
)
+
.....
+
1
(
28
30
)
+
0
(
29
30
)
−
(
30
30
)
Also
S
=
−
(
0
30
)
+
0
(
1
30
)
+
1
(
2
30
)
+
.......
+
27
(
28
30
)
+
28
(
29
30
)
+
29
(
30
30
)
⇒
2
S
=
28
(
30
C
0
+
30
C
1
+
30
C
2
+
………
+
30
C
30
)
=
28
(
2
30
)
Hence,
S
=
14
×
2
30
=
2
7
×
2
32
.
⇒
k
=
2
7