Given that, ∫0π(1+sinxx)2dx=1 ..(i)
Let I=∫0π[(1+sinx)22x2cos2(x/2)]dx ∴I=∫0π(1+sinx)2x2(1+cosx)dx =∫0π(1+sinxx)2dx+∫0π(1+sinx)x2cosxdx ⇒I=1+I2 ..(ii)
Where I=1+I2 ⇒I2=−∫0π(1+sinx)2(π−x)2cosxdx ⇒2I2=∫0π(1+sinx)2(−π2+2πx).dx ⇒2I2=−π2∫0π(1+sinx)2cosx.dx+2π∫0π(1+sinx)2x(cosx)dx =π2[1+sinx1]0π+2π∫0π(1+sinx)2xcosxdx ⇒I2=2π2[1−1]+I3 ?..(iii) Where I3=π∫0π(1+sinx)2xcosxdx =π[{−1+sinx)x}0π+∫0π1+sinx1dx] =π[−π+∫0π(1+tanx/2)2sec2x/2dx] =π[−π−2(1+tan2x1)0π] =π(−π+2) On putting this value in Eq. (iii), we get I2=π(−π/2) On putting this value in Eq. (ii), we get I=1+π(−π+2)