Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the value of integral displaystyle ∫ (d x/(x + √x2 - 1)2)=ax3-x+b(x2 - 1)(1/b)+C , (where, C is the constant of integration), then a× b is equal to
Q. If the value of integral
∫
(
x
+
x
2
−
1
)
2
d
x
=
a
x
3
−
x
+
b
(
x
2
−
1
)
b
1
+
C
, (where,
C
is the constant of integration), then
a
×
b
is equal to
1789
196
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
1
23%
B
9
4
38%
C
2
23%
D
4
9
15%
Solution:
∫
(
x
−
x
2
−
1
)
2
d
x
=
∫
x
2
+
(
x
2
−
1
)
−
2
x
x
2
−
1
d
x
=
3
2
x
3
−
x
+
3
2
(
x
2
−
1
)
2
3
+
C
⇒
a
=
b
=
3
2