We have, cot[cosec−135+tan−132] ∵cosec−135=tan−143 (with the help of right-angle triangle)
Then, cot[tan−143+tan−132] =cot[(tan)−1(1−43⋅3243+32)] =cot[(tan)−1(1212−6129+8)] =cot[tan−1617] =cot[(cot)−1176],(∵(cot)−1x=(tan)−1x1,x>0) =176(∵cot((cot)−1x)=x) ∴k=6