Given, C0+2C1+3C2+…+(n+1)Cn=576
We know that, (1+x)n=nC0+nC1x+nC2x2+…+nCnxn ⇒x(1+x)n=nC0x+nC1x2+nC2x3+…+nCnxn+1
On differentiating w.r.t. x, we get (1+x)n+x⋅n(1+x)n−1 =nC0+2⋅nC1⋅x+3nC2x2+…+(n+1)nCnxn
On putting n=1, we get 2n+n⋅2n−1=nC0+2⋅nC1+3⋅nC1+…+(n+1)nCn ⇒2n−1(n+2)=576 (given) ⇒2n−1(n+2)=26×9=2(7−1)⋅(7+2)
On comparing, we get n=7