If, A+B=45o tan(A+B)=1 ∵tan(A+B)=1−tanAtanBtanA+tanB ⇒tanA+tanB=1−tanAtanB ⇒(1+tanA)(1+tanB)=2
LHS =[(1+tan1o)(1+tan(44)o)][(1+tan2o)(1+tan(43)o)]…[(1+tan(45)o)][for each(1+tanθ)[1+tan(4π−θ)=2]] =222(1+1) =223 =2λ
then, λ=23.
Hence the sum of digits of λ is 2+3 =5