If, A+B=45∘ tan(A+B)=1 ∵tan(A+B)=1−tanAtanBtanA+tanB ⇒tanA+tanB=1−tanAtanB ⇒(1+tanA)(1+tanB)=2
LHS =[(1+tan1∘)(1+tan44∘)][(1+tan2∘)(1+tan43∘)]…[(1+tan45∘)]
for each [(1+tanθ)[1+tan(4π−θ)=2]] =222(1+1) =223 =2λ
Then, λ=23.
Hence, the sum of digits of λ is 2+3=5