Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the value ∫ (1-( cot x)2008/ tan x+( cot x)2009) d x=(1/k) ln | sin k x+ cos k x|+C, then find k.
Q. If the value
∫
t
a
n
x
+
(
c
o
t
x
)
2009
1
−
(
c
o
t
x
)
2008
d
x
=
k
1
ln
∣
∣
sin
k
x
+
cos
k
x
∣
∣
+
C
, then find
k
.
138
128
Integrals
Report Error
Answer:
2010
Solution:
L.H.S.
∫
(
s
i
n
x
)
2008
(
c
o
s
x
s
i
n
x
+
(
s
i
n
x
c
o
s
x
)
2009
)
(
s
i
n
x
)
2008
−
(
c
o
s
x
)
2008
d
x
=
∫
(
s
i
n
x
)
2010
+
(
c
o
s
x
)
2010
s
i
n
x
c
o
s
x
(
(
s
i
n
x
)
2008
−
(
c
o
s
x
)
2008
)
d
x
=
∫
(
s
i
n
x
)
2010
+
(
c
o
s
x
)
2010
(
(
s
i
n
x
)
2009
c
o
s
x
−
(
c
o
s
x
)
2009
s
i
n
x
)
d
x
put
(
sin
x
)
2010
+
(
cos
x
)
2010
=
t
=
2010
1
∫
t
d
t
=
2010
1
ln
∣
∣
(
sin
x
)
2010
+
(
cos
x
)
2010
∣
∣
+
c
⇒
k
=
2010