Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the two roots of the equation, (a + 1)(x2 + x +1)2+(a+1)(x2+x+1)2=0 are real and distinct, then the set of all values of 'a' is :
Q. If the two roots of the equation,
(
a
+
1
)
(
x
2
+
x
+
1
)
2
+
(
a
+
1
)
(
x
2
+
x
+
1
)
2
=
0
are real and distinct, then the set of all values of
′
a
′
is :
1850
215
JEE Main
JEE Main 2015
Complex Numbers and Quadratic Equations
Report Error
A
(
−
2
1
,
0
)
6%
B
(
−
∞
,
−
2
)
∪
(
2
,
∞
)
28%
C
(
−
2
1
,
0
)
∪
(
0
,
2
1
)
67%
D
(
0
,
2
1
)
0%
Solution:
(
a
−
1
)
(
x
4
+
x
2
+
1
)
+
(
a
+
1
)
(
x
2
+
x
+
1
)
2
=
0
⇒
(
a
−
1
)
(
x
2
+
x
+
1
)
(
x
2
−
x
+
1
)
(
a
+
1
)
(
x
2
+
x
+
1
)
2
=
0
⇒
(
x
2
+
x
+
1
)
[
(
a
−
1
)
(
x
2
−
x
+
1
)
+
(
a
1
)
(
x
2
+
x
+
1
)
]
=
0
⇒
(
x
2
+
x
+
1
)
(
a
x
2
+
x
+
a
)
=
0
For roots to be distinct and real,
a
=
0
and
1
−
4
a
2
>
0
⇒
a
=
0
and
a
2
<
4
1
⇒
a
∈
(
−
2
1
,
0
)
∪
(
0
,
2
1
)