loga,logb,logc are in A.P. ⇒2logb=loga+logc ∴b2=ac….(1) ⇒a,b,c are in GP.
(B)also given (loga−log2b),(log2b−log3c),(log3c−loga) are in A.P. ⇒2(log2b−log3c)=log3c−log2b ⇒3log2b=3log3c ∴2b=3c…(2)⇒4b2=9c2
from (1) and (3) 4ac=9c2⇒a=49c and b=23c a=49c;b=23c and c=c ∴a,b,c forms the sides of triangle ⇒(D) a+b>c;b+c>a;c+a>b
but a,2b and 3c are not in H.P.