Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the tangent to the curve y = (x/x2 - 3) , x ∈ R , (x ≠ ± √3), at a point (α , β) ≠ (0, 0) on it is parallel to the line 2x + 6y - 11 = 0, then :
Q. If the tangent to the curve
y
=
x
2
−
3
x
,
x
∈
R
,
(
x
=
±
3
)
, at a point
(
α
,
β
)
=
(
0
,
0
)
on it is parallel to the line
2
x
+
6
y
−
11
=
0
, then :
3970
222
JEE Main
JEE Main 2019
Application of Derivatives
Report Error
A
∣6
α
+
2
β
∣
=
19
50%
B
∣2
α
+
6
β
∣
=
11
0%
C
∣6
α
+
2
β
∣
=
9
0%
D
∣2
α
+
6
β
∣
=
19
50%
Solution:
d
x
d
y
∣
∣
(
α
,
β
)
=
(
α
2
−
3
)
2
−
α
2
−
3
Given that :
(
α
2
−
3
)
2
−
α
2
−
3
=
3
1
⇒
α
=
0
±
3
(
α
=
0
)
⇒
β
=
±
2
1
.
(
β
=
0
)
∣
6
α
+
2
β
∣
=
19