The equation of the tangent at (4cosθ,1116sinθ) to
the ellipse 16x2+11y2=256 is 16x(4cosθ)+11y(1116sinθ)=256
or 4xcosθ+11ysinθ=16
This touches the circle (x−1)2+y2=42 if ∣∣16cos2θ+11sin2θ4cosθ−16∣∣=4 ⇒(cosθ−4)2=16cos2θ+11sin2θ ⇒15cos2θ+11sin2θ+8cosθ−16=0 ⇒4cos2θ+8cosθ−5=0 ⇒(2cosθ−1)(2cosθ+5)=0 ⇒cosθ=21 ⇒θ=±3π