Q.
If the tangent at any point P on the ellipse a2x2+b2y2=1 meets the tangents at the vertices A and A′ in L and L′ respectively, then AL⋅A′L′ is equal to
Let P(acosθ,bsinθ) be any point on the ellipse. Then, equation of the tangent at P is axcosθ+bysinθ=1
It cuts the lines x=a and x=−aL(a,sinθb(1−cosθ)) and L′(−a,sinθb(1+cosθ)) respectively.
Since, A and A′ are the vertices of given ellipse.
Therefore, coordinates A(a,0) and B(0,−a) . ∴AL=sinθb(1−cosθ) and AL′=sinθb(1+cosθ)