Given: x+ay+z=3,x+2y+2z=6,x+5y+3z=b Δ=∣∣111a25123∣∣=1(6−10)−a(3−2)+1(5−2) =−4−a+z=−(a+1) Δ1=∣∣36ba25123∣∣=3(6−10)−a(18−2b)+(30−2b) =−12−18a+2ab+30−2b =18−2b−18a+2ab =18(1−a)−2b(1−a) =2(g−b)(1−a) Δ2=∣∣11136b123∣∣=1(18−2b)−3(3−2)+1(b−6) =18−2b−3+b−6 =(g−b) Δ3=∣∣111a253bb∣∣=1(2b−30)−a(b−6)+3(5−2) =2b−30−ab+6a+9 =b(2−a)−3(7−2a)
For no solution, Δ=0 and at least one of Δ1,Δ2 and Δ3 is non zero. Δ=0⇒a=−1 Δ1=0⇒a=1,b=9 Δ2=0⇒b=9
Therefore, for no solution, a=−1 and b=9.