Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the system of equations x-2y+5z=3, 2x-y+z=1, and 11x-7y+pz=q has infinitely many solutions, then
Q. If the system of equations
x
−
2
y
+
5
z
=
3
,
2
x
−
y
+
z
=
1
,
and
11
x
−
7
y
+
p
z
=
q
has infinitely many solutions, then
4212
203
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
p
+
q
=
2
11%
B
p
+
q
=
10
8%
C
p
−
q
=
2
72%
D
p
−
q
=
5
8%
Solution:
⇒
for infinite solution
D
=
0
,
D
1
=
0
,
D
2
=
0
,
D
3
=
0
D
=
∣
∣
1
2
11
−
2
−
1
−
7
5
1
p
∣
∣
=
0
⇒
(
−
p
+
7
)
+
2
(
2
p
−
11
)
+
5
(
−
14
+
11
)
=
0
⇒
−
p
+
7
+
4
p
−
22
−
15
=
0
⇒
3
p
−
30
=
0
⇒
p
=
10
D
1
=
∣
∣
3
1
q
−
2
−
1
−
7
5
1
10
∣
∣
=
0
⇒
3
(
−
10
+
7
)
+
2
(
10
−
q
)
+
5
(
−
7
+
q
)
=
0
⇒
−
9
+
20
−
2
q
−
35
+
5
q
=
0
⇒
−
24
+
3
q
=
0
q
=
8
D
2
=
∣
∣
1
2
11
3
1
q
5
1
10
∣
∣
=
0
⇒
(
10
−
q
)
−
3
(
9
)
+
5
(
2
q
−
11
)
⇒
10
+
9
q
−
27
−
55
=
0
⇒
q
=
8
D
3
=
∣
∣
1
2
11
−
2
−
1
−
7
3
1
q
∣
∣
=
0
⇒
(
−
q
+
7
)
+
2
(
2
q
−
11
)
+
3
(
−
3
)
=
0
⇒
q
=
8