Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum to infinity of the series 1+4x+7x2+10x3+. ldots ldots . is (35/16) , where |x| < 1 , then x is equal to
Q. If the sum to infinity of the series
1
+
4
x
+
7
x
2
+
10
x
3
+
.
……
.
is
16
35
, where
∣
x
∣
<
1
, then
x
is equal to
140
153
NTA Abhyas
NTA Abhyas 2022
Report Error
A
7
19
B
5
1
C
4
1
D
7
4
Solution:
S
=
1
+
4
x
+
7
x
2
+
10
x
3
+
.
……
.
x
S
=
x
+
4
x
2
+
7
x
3
+
.
……
..
On subtracting, we get,
S
(
1
−
x
)
=
1
+
3
x
+
3
x
2
+
3
x
3
+
.
……
..
=
1
+
3
x
(
1
−
x
1
)
,
∣
x
∣
<
1
(
1
−
x
)
S
=
1
−
x
1
−
x
+
3
x
=
1
−
x
1
+
2
x
S
=
(
1
−
x
)
2
1
+
2
x
=
16
35
(given)
16
+
32
x
=
35
+
35
x
2
−
70
x
⇒
35
x
2
−
102
x
+
19
=
0
⇒
(
5
x
−
1
)
(
7
x
−
19
)
=
0
x
=
5
1
,
7
19
But,
∣
x
∣
<
1
⇒
x
=
5
1