Let a^ and b^ are two unit vectors.
Then, ∣a^+b^∣=1 ⇒∣a^+b^∣2=1 ⇒(a^+b^)⋅(a^+b^)=1 ⇒∣a^∣2+∣b^∣2+2a^⋅b^=1 ⇒1+1+2a^⋅b^=1 ⇒2a^⋅b^=−1
Again, ∣a^−b^∣2=(a^−b^)⋅(a^−b^) =∣a^∣2+∣b∣2−2a^⋅b^ =1+1−(−1) =1+1+1=3 ∴∣a^−b^∣=3​