Let the three numbers are a−d,a,a+d.
Given, sum of the numbers =24 ∴a−d+a+a+d=24 ⇒3a=24 ⇒a=8
and product of the numbers =440 ∴(a−d)a(a+d)=440 ⇒a(a2−d2)=440 ⇒8(64−d2)=440 ⇒64−d2=55 ⇒d2=64−55 ⇒d2=9 ⇒d=±3
When, a=8 and d=3, then numbers are a−d=8−3=5 a=8 and a+d=8+3=11 ⇒5,8,11
When, a=8 and d=−3, then numbers are a−d=8+3=11 a=8
and a+d=8−3 =5 ⇒11,8,5
Hence, the numbers are 5,8,11 or 11,8,5.