Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of the series 1+(3/2)+(5/4)+(7/8)+....+((2 n - 1)/(2)n - 1) is f(n), then the value of f(8) is
Q. If the sum of the series
1
+
2
3
+
4
5
+
8
7
+
....
+
(
2
)
n
−
1
(
2
n
−
1
)
is
f
(
n
)
,
then the value of
f
(
8
)
is
1393
232
NTA Abhyas
NTA Abhyas 2020
Sequences and Series
Report Error
A
4
+
2
5
12
B
5
+
2
7
13
C
6
−
2
7
19
D
5
−
2
7
13
Solution:
S
n
=
1
+
2
3
+
4
5
+
8
7
+
.....
+
2
n
−
1
(
2
n
−
1
)
2
1
S
n
=
2
1
+
4
3
+
8
5
+
.....
+
2
n
−
1
(
2
n
−
3
)
+
2
n
(
2
n
−
1
)
Subtracting, we get,
2
1
S
n
=
1
+
2
2
+
4
2
+
8
2
+
.....
+
2
n
−
1
2
−
2
n
(
2
n
−
1
)
2
1
S
n
=
1
+
2
(
2
1
+
4
1
+
8
1
+
.....
(
n
−
1
)
t
er
m
s
)
−
2
n
(
2
n
−
1
)
2
1
S
n
=
1
+
2
(
1
−
2
1
)
2
1
(
1
−
(
2
1
)
n
−
1
)
−
2
n
(
2
n
−
1
)
2
1
S
n
=
1
+
2
(
1
−
2
n
−
1
1
)
−
2
n
(
2
n
−
1
)
=
1
+
2
−
2
n
−
2
1
−
2
n
(
2
n
−
1
)
f
(
n
)
=
S
n
=
6
−
2
n
−
3
1
−
2
n
−
1
(
2
n
−
1
)
⇒
f
(
8
)
=
6
−
2
5
1
−
2
7
15
f
(
8
)
=
6
−
2
7
(
4
+
15
)
=
6
−
2
7
19